Média em movimento centrada em r
Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é frequentemente o primeiro, e um dos mais úteis, estatísticas de resumo a calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que o primeiro MA possível de ordem k gt0 é aquele para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo k-1 anteriores. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula de cálculo de referência padrão significa que os primeiros pontos de dados k-1 não têm valor de MA, mas depois os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para esse problema é usar cálculos centralizados de MA, nos quais o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio a partir de observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencialmente ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis de alfa para cada t 2,3. Definindo a primeira estimativa como o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior, e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, a suavização exponencial de dois ou três estágios pode ser aplicada como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo eo exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Technometrics, 1, 239-2505.2 Smoothing Time Series Smoothing é normalmente feito para nos ajudar a ver melhor padrões, tendências, por exemplo, em séries temporais. Geralmente suavizar a irregularidade irregular para ver um sinal mais claro. Para os dados sazonais, podemos suavizar a sazonalidade para que possamos identificar a tendência. Suavização não nos fornece um modelo, mas pode ser um bom primeiro passo para descrever vários componentes da série. O termo filtro às vezes é usado para descrever um procedimento de suavização. Por exemplo, se o valor suavizado para um determinado tempo é calculado como uma combinação linear de observações para tempos circundantes, pode-se dizer que weve aplicado um filtro linear para os dados (não o mesmo que dizer o resultado é uma linha reta, por o caminho). O uso tradicional do termo média móvel é que em cada ponto no tempo determinamos médias (possivelmente ponderadas) dos valores observados que circundam um determinado tempo. Por exemplo, no instante t. Uma média móvel centrada do comprimento 3 com pesos iguais seria a média dos valores às vezes t -1. T. E t1. Para tirar a sazonalidade de uma série, para que possamos ver melhor a tendência, usaríamos uma média móvel com um período sazonal span. Assim, na série suavizada, cada valor suavizado foi calculado em média em todas as estações. Isso pode ser feito olhando para uma média móvel unilateral em que você média todos os valores para os anos anteriores de dados ou uma média móvel centrada na qual você usa valores antes e depois da hora atual. Para dados trimestrais, por exemplo, poderíamos definir um valor suavizado para o tempo t como (x t x t-1 x t-2 x t-3) 4, a média deste tempo e os 3 trimestres anteriores. No código R, este será um filtro unilateral. Uma média móvel centrada cria um pouco de uma dificuldade quando temos um número par de períodos de tempo no período sazonal (como costumamos fazer). Para suavizar a sazonalidade nos dados trimestrais. A fim de identificar a tendência, a convenção usual é usar a média móvel alisada no tempo t é Para suavizar a sazonalidade em dados mensais. Para identificar a tendência, a convenção usual é usar a média móvel alisada no instante t. Isto é, aplicamos o peso 124 a valores às vezes t6 e t6 e peso 112 a todos os valores em todos os momentos entre t5 e t5. No comando R filtro, bem especificar um filtro de dois lados quando queremos usar valores que vêm antes e depois do tempo para o qual foram suavização. Observe que na página 71 de nosso livro, os autores aplicam pesos iguais em uma média móvel sazonal centrada. Thats ok também. Por exemplo, um trimestral mais suave pode ser alisado no momento t é fraco x frac x frac x frac x frac x Um mensal mais suave pode aplicar um peso de 113 a todos os valores de tempos t-6 a t6. O código que os autores usam na página 72 tira vantagem de um comando rep que repete um valor um certo número de vezes. Eles não usam o parâmetro filter dentro do comando filter. Exemplo 1 Produção Trimestral de Cerveja na Austrália Tanto na Lição 1 quanto na Lição 4, analisamos uma série de produção trimestral de cerveja na Austrália. O código R seguinte cria uma série suavizada que nos permite ver o padrão de tendência e traça esse padrão de tendência no mesmo gráfico da série de tempo. O segundo comando cria e armazena a série suavizada no objeto chamado trendpattern. Note que dentro do comando filter, o parâmetro named filter dá os coeficientes para o nosso alisamento e sides 2 faz com que um centrado suave seja calculado. Beerprod (beerprod. dat) trendpattern filtro (beerprod, filtro c (18, 14, 14, 14, 18), sides2) gráfico (beerprod, tipo b, tendência principal média móvel) linhas (trendpattern) Pode subtrair o padrão de tendência dos valores dos dados para obter uma melhor visão da sazonalidade. O resultado segue: Outra possibilidade para a série de alisamento para ver a tendência é o filtro one-sided trendpattern2 (beerprod, filter c (14, 14, 14, 14), sides1) Com isso, o valor suavizado é a média do ano passado. Exemplo 2. Desemprego mensal nos Estados Unidos Na lição de casa da semana 4, você analisou uma série mensal de desemprego nos Estados Unidos para 1948-1978. Heres um alisamento feito para olhar para a tendência. (Trendunemploy, mainTrend no Desemprego dos Estados Unidos, 1948-1978, xlab Year) Apenas a tendência alisada é plotada. (Trendunemployfilter) (trendunemployfilter) (desemprego, filtroc (124,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112,124), sides2) trendunemploy ts (trendunemploy, start c (1948,1) O segundo comando identifica as características de tempo do calendário da série. Isso faz com que a trama tenha um eixo mais significativo. A trama segue. Para séries não-sazonais, você arent obrigado a suavizar qualquer intervalo particular. Para alisar você deve experimentar com médias móveis de diferentes vãos. Esses períodos de tempo podem ser relativamente curtos. O objetivo é derrubar as bordas ásperas para ver que tendência ou teste padrão pôde estar lá. Outros Métodos de Suavização (Seção 2.4) A Seção 2.4 descreve várias alternativas sofisticadas e úteis para a suavização média móvel. Os detalhes podem parecer esboçado, mas isso é bom porque não queremos ficar atolados em muitos detalhes para esses métodos. Dos métodos alternativos descritos na Seção 2.4, o lowess (regressão localmente ponderada) pode ser o mais amplamente utilizado. Exemplo 2 Continua O gráfico seguinte é uma linha de tendência suavizada para a série de Desemprego dos EUA, encontrada utilizando um lowess mais suave, no qual uma quantidade substancial (23) contribuiu para cada estimativa suavizada. Note que isso suavizou a série mais agressivamente do que a média móvel. Os comandos utilizados foram os desempregados (desemprego, início c (1948,1), freq12) lote (lowess (desempregado, f 23), suavização principal Lowess da tendência de desemprego dos EUA) Suavização Exponencial Única A equação básica de previsão para suavização exponencial única é frequentemente Dado como hat alfa xt (1-alfa) hat t texto Nós prognosticamos que o valor de x no tempo t1 seja uma combinação ponderada do valor observado no tempo t eo valor previsto no instante t. Embora o método seja chamado um método de suavização, seu usado principalmente para previsão de curto prazo. O valor de é chamado de constante de suavização. Por qualquer razão, 0.2 é uma escolha padrão popular de programas. Isso coloca um peso de 0,2 na observação mais recente e um peso de 1,2,8 na previsão mais recente. Com um valor relativamente pequeno de, o alisamento será relativamente mais extenso. Com um valor relativamente grande de, o alisamento é relativamente menos extenso à medida que mais peso será colocado no valor observado. Este é um método simples de previsão em uma etapa que, à primeira vista, parece não exigir um modelo para os dados. De fato, este método é equivalente ao uso de um modelo ARIMA (0,1,1) sem constante. O procedimento ideal é ajustar um modelo ARIMA (0,1,1) ao conjunto de dados observado e usar os resultados para determinar o valor de. Isso é ótimo no sentido de criar o melhor para os dados já observados. Embora o objetivo seja suavizar e um passo à frente previsões, a equivalência ao modelo ARIMA (0,1,1) traz um bom ponto. Não devemos cegamente aplicar alisamento exponencial porque o processo subjacente pode não ser bem modelado por um ARIMA (0,1,1). Considere um ARIMA (0,1,1) com média 0 para as primeiras diferenças, xt - x t-1: começa hat amp amp xt theta1 wt amp amp xt theta1 (xt - que t) amp amp (1 theta1) xt - theta1hat tendem. Se deixarmos (1 1) e assim - (1) 1, vemos a equivalência à equação (1) acima. Por que o Método é Chamado Suavização Exponencial Isso produz o seguinte: começo chapéu amplificador amp alfa xt (1-alfa) alfa x (1-alfa) chapéu amp amp alfa xt alfa (1-alfa) x (1-alfa) 2hat fim Continuar Desta forma substituindo sucessivamente o valor previsto no lado direito da equação. Isto leva a: hat alpha xt alfa (1-alfa) x alfa (1-alfa) 2 x dots alfa (1-alfa) jx pontos alfa (1-alfa) x1 texto A equação 2 mostra que o valor previsto é uma média ponderada De todos os valores passados da série, com pesos exponencialmente mudando como nos movemos para trás na série. Suavização Exponencial Óptima em R Basicamente, basta ajustar um ARIMA (0,1,1) aos dados e determinar o coeficiente. Podemos examinar o ajuste do bom, comparando os valores previstos com a série real. O alisamento exponencial tende a ser usado mais como uma ferramenta de previsão do que um verdadeiro mais suave, por isso estávamos olhando para ver se temos um bom ajuste. Exemplo 3. N 100 observações mensais do logaritmo de um índice de preços do petróleo nos Estados Unidos. A série de dados é: Um ajuste ARIMA (0,1,1) em R deu um coeficiente MA (1) 0,3877. Assim, (1 1) 1,3877 e 1- -0,3877. A equação exponencial de suavização de previsão é 1.3877xt - 0.3877hat t No tempo 100, o valor observado da série é x 100 0,86601. O valor previsto para a série nesse momento é Assim, a previsão para o tempo 101 é 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 O seguinte é o quão bem o mais suave se encaixa a série. É um bom ajuste. Isso é um bom sinal para a previsão, o principal objectivo para este mais suave. Aqui estão os comandos usados para gerar a saída para este exemplo: oilindex scan (oildata. dat) gráfico (oilindex, tipo b, registro principal de índice de óleo série) expsmoothfit arima (oilindex, ordem c (0,1,1)) expsmoothfit Para ver o arima resultados preditos oilindex - expsmoothfitresiduals previu valores gráfico (oilindex, typeb, principal Exponencial Suavização de Log of Oil Index) linhas (preditos) 1.3877oilindex100-0.3877predicteds100 previsão de tempo 101 Double Exponential Smoothing Dupla exponencial alisamento pode ser usado quando theres Tendência (longo ou curto prazo), mas sem sazonalidade. Essencialmente, o método cria uma previsão combinando estimativas exponencialmente suavizadas da tendência (inclinação de uma linha reta) eo nível (basicamente, a intercepção de uma linha reta). Dois pesos diferentes, ou parâmetros de suavização, são usados para atualizar esses dois componentes a cada vez. O nível suavizado é mais ou menos equivalente a uma suavização exponencial simples dos valores de dados ea tendência alisada é mais ou menos equivalente a uma simples suavização exponencial das primeiras diferenças. O procedimento é equivalente à montagem de um modelo ARIMA (0,2,2), sem constante, pode ser realizado com um ajuste ARIMA (0,2,2). (1-B) 2 xt (1theta1B theta2B2) p. Na segunda coluna desta tabela, é mostrada uma média móvel de ordem 5, fornecendo uma estimativa do ciclo de tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Parcela 40 elecsales, venda de eletricidade principal quotResidential, ylab quotGWhquot. 41 Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as flutuações secundárias. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em nenhum dos lados. Posteriormente, usaremos métodos mais sofisticados de estimativa de ciclo tendencial que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, existem k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 cerveja2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) 4 e 448,8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média destes dois: 450,0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), ele é chamado de média móvel centrada de ordem 4. Isso é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, uma 3 x 3 MA é frequentemente utilizada e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-la simétrica. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo tendencial com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo tendencial a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicados aos dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido utilizando um 2-8 MA ou um 2-12 MA. Em geral, um m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1m exceto para o primeiro e último termos que tomam pesos 1 (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12 MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar a tendência-ciclo de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2 x 12-MA aplicado ao índice de ordens de equipamentos elétricos. Observe que a linha suave não mostra nenhuma sazonalidade, é quase o mesmo que o ciclo de tendências mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto para 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotred 41 Química média ponderada As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns deles são dados na Tabela 6. A largura da janela em movimento deve ser um número inteiro entre 1 e n uma opção para escolher diferentes algoritmos C - uma versão é escrita em C. Pode tratar números não finitos como NaNs e Infs (como mean (X, na. rm TRUE)). Ele funciona o mais rápido para endrulemean. Rápido - segundo, ainda mais rápido, versão C. Este algoritmo não funciona com números não finitos. Ele também funciona o mais rápido para endrule que não seja médio. R - muito mais lento código escrito em R. Útil para depuração e como documentação. Exato - o mesmo que C. exceto que todas as adições são executadas usando o algoritmo que segue e corrige a adição arredondar-fora da corda de caráter dos erros que indica como os valores no começo e no fim, dos dados, devem ser tratados. Apenas os primeiros e últimos valores de k2 em ambas as extremidades são afetados, onde k2 é a metade da largura de banda k2 k 2. média - aplica a função subjacente a seções menores e menores da matriz. Equivalente a: for (i in 1: k2) outi mean (x1: (ik2)). Esta opção é implementada em C se algC. Caso contrário, é feito em R. trim - trim o comprimento da matriz de saída de termina é igual ao comprimento (x) -2k2 (out out (k21) :( n-k2)). Esta opção imita a saída de aplicar (embed (x, k), 1, média) e outras funções relacionadas. Preencher as extremidades com os números de x vetor (out1: k2 x1: k2) constante - preencher as extremidades com o primeiro eo último valor calculado na matriz de saída (out1: k2 outk21) NA - preencher as extremidades com NAs (out1: k2 NA ) Func - igual à média mas implimented em R. Esta opção poderia ser muito lenta, e é incluída principalmente para testar Similar ao endrule na função runmed que tem as seguintes opções: ldquo c (mediana, manter, constante) rdquo. specifies se o resultado Deve ser centralizado (padrão), alinhado à esquerda ou alinhado à direita. Se a média do endrule, em seguida, definir alinhamento para a esquerda ou direita vai cair para trás em execução mais lenta equivalente ao func endrule. Para além dos valores finais, o resultado de y runmean (x, k) é o mesmo que ldquo para (j (1k2) :( n-k2)) yjmean (x (j-k2) :( jk2)) rdquo. O principal incentivo para escrever este conjunto de funções foi a relativa lentidão da maioria das funções de janela móvel disponíveis em R e seus pacotes. Com exceção do runmed. Uma função mediana de janela em execução, todas as funções listadas na seção ver também são mais lentas do que muito ineficaz aplicar (embed (x, k), 1, FUN) rdquo abordagem. A velocidade relativa da função runmean é O (n). Função EndRule aplica um dos cinco métodos (veja o argumento endrule) para processar pontos finais da matriz de entrada x. Na versão atual do código, a opção endrulemean padrão é calculada dentro do código C. Isso é feito para melhorar a velocidade no caso de grandes janelas móveis. No caso da função runmean (.algexact), um algoritmo especial é usado (ver seção de referências) para garantir que os erros de arredondamento não se acumulam. Como resultado, o runmean é mais preciso do que as funções filter (x, rep (1k, k)) e runmean (.AlcC). Retorna um vetor numérico ou matriz do mesmo tamanho de x. Somente no caso de endruletrim os vetores de saída serão mais curtos e matrizes de saída terão menos linhas. A função runmean (.algexact) é baseada no código de Vadim Ogranovich, que é baseado no código Python (ver última referência), apontado por Gabor Grothendieck. Referências Sobre a correção de erro de arredondamento usada no runmean. Shewchuk, Jonathan Precisão Adaptativa de Ponto Flutuante Aritmética e Rápido Predicados Geométricos Robustos. Www-2.cs. cmu. eduafscsprojectquakepublicpapersrobust-arithmetic. ps Mais sobre a correção de erro de arredondamento pode ser encontrada em: aspn. activestateASPNCookbookPythonRecipe393090 Links relacionados a: moving mean - mean. Kernapply. filtro. decompor. Stl. Rollmean da biblioteca do jardim zoológico, subsums da biblioteca mágica, outras funções móveis da janela deste pacote: runmin. Runmax Runquantile Runmax e rund runmed funções genéricas de execução de janela: aplicar (incorporar (x, k), 1, FUN) (mais rápido), executando a partir do pacote gtools (extremamente lento para esta finalidade), subsums da biblioteca mágica pode executar operações de janela em execução em dados com Qualquer dimensão. Pacote caTools versão 1.12 Índice
Comments
Post a Comment